Kinetic Barrier Diagrams to Visualize and Engineer Molecular Nonequilibrium Systems

Small. 2023 Apr;19(14):e2206188. doi: 10.1002/smll.202206188. Epub 2023 Jan 26.

Abstract

Molecular nonequilibrium systems hold great promises for the nanotechnology of the future. Yet, their development is slowed by the absence of an informative representation. Indeed, while potential energy surfaces comprise in principle all the information, they hide the dynamic interplay of multiple reaction pathways underlying nonequilibrium systems, i.e., the degree of kinetic asymmetry. To offer an insightful visual representation of kinetic asymmetry, we extended an approach pertaining to catalytic networks, the energy span model, by focusing on system dynamics - rather than thermodynamics. Our approach encompasses both chemically and photochemically driven systems, ranging from unimolecular motors to simple self-assembly schemes. The obtained diagrams give immediate access to information needed to guide experiments, such as states' population, rate of machine operation, maximum work output, and effects of design changes. The proposed kinetic barrier diagrams offer a unifying graphical tool for disparate nonequilibrium phenomena.

Keywords: energy span theory; molecular machines; molecular motors; nonequilibrium systems.