Two Co-Based Metal-Organic Framework Isomers with Similar Metal-Carboxylate Sheets: Turn-On Ratiometric Luminescence Sensing Activities toward Biomarker N-Acetylneuraminic Acid and Discrimination of Ga3+ and In3

Inorg Chem. 2023 Feb 6;62(5):2083-2094. doi: 10.1021/acs.inorgchem.2c03719. Epub 2023 Jan 26.

Abstract

Two supramolecular Co-MOF isomers, namely, {[Co(L)0.5(m-bimb)]·3H2O}n (LCU-115) and {[Co(L)0.5(p-bimb)]·3H2O}n (LCU-116), were synthesized from an amide-containing carboxylic acid N,N″-(3,5-dicarboxylphenyl)benzene-1,4-dicarboxamide (H4L) and two flexible positional isostructural N-containing ligands m-bimb and p-bimb (m-bimb = 1,3-bis((1H-imidazol-1-yl)methyl)benzene; p-bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene). The carboxylate ligands connect Co(II) centers to form 2D metal-carboxylate sheets, which are extended further by m-bimb and p-bimb to form a 2D bilayer with parallel stacking (LCU-115) and a 3D framework (LCU-116), respectively. Luminescence measurements indicated that these two complexes exhibited interesting multiresponsive sensing activities toward pH, biomarker N-acetylneuraminic acid, and trivalent cations Ga3+/In3+. They show highly sensitive turn-on fluorescence responses in the acidic range and can also be regarded as on-off-on vapoluminescent sensors to typical acidic and basic gases HCl and Et3N. It is worth noting that these complexes have excellent turn-on ratiometric fluorescence sensing ability for N-acetylneuraminic acid (NANA) with detection limits as low as 7.39 and 8.06 μM, respectively. Furthermore, they were successfully applied for the detection of NANA in simulated urine and serum samples with satisfactory results. For ion detection, LCU-116 could detect both Ga3+ and In3+, while LCU-115 could distinguish Ga3+ from In3+ with the latter showing luminescence quenching. The sensing mechanism was investigated in detail by XRD, UV-vis, EDS, XPS, SEM, and TEM. The results of interday and intraday precision studies gave low RSD values in the range of 1.19-3.53%, ascertaining the reproducibility of these sensors. The recoveries for the sensing analytes in simulated urine/serum or real water are satisfactory from 96.7 to 103.3% (toward NANA) and 96.6 to 115.0% (toward Ga3+ and In3+), indicating that these two complexes also possess acceptable reliability for monitoring in real samples. The results indicated that the supramolecular isomers LCU-115 and LCU-116 are promising material candidates for application in biological and environmental monitoring.

MeSH terms

  • Benzene
  • Carboxylic Acids / chemistry
  • Crystallography, X-Ray
  • Ligands
  • Luminescence*
  • Metal-Organic Frameworks*
  • Metals / chemistry
  • Models, Molecular
  • N-Acetylneuraminic Acid
  • Reproducibility of Results

Substances

  • Metal-Organic Frameworks
  • N-Acetylneuraminic Acid
  • Ligands
  • Benzene
  • Metals
  • Carboxylic Acids