Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support

Commun Chem. 2022 Jun 3;5(1):70. doi: 10.1038/s42004-022-00686-4.

Abstract

It is important to develop highly active and stable catalysts for high temperature reactions, such as dry reforming of methane. Here we show a La(NiCo)OΔ (LNCO) submonolayer catalyst (SMLC) stabilized by the surface lattice of a perovskite LaCrO3 support and demonstrate a Ni-Co synergistic effect. The submonolayer/support type catalyst was prepared by in-situ hydrogen reduction of a LaNi0.05Co0.05Cr0.9O3 precursor synthesized by a sol-gel method. The LNCO-SMLC is highly active and very stable during a 100 h on stream test at 750 °C under the reaction conditions of dry reforming of methane. The catalyst also shows good anti-coking ability. We found that the synergistic effect between Ni and Co atoms in LNCO-SMLC remarkably improved the thermostability of the catalyst. This work provides a useful concept for designing atomically dispersed catalysts with high thermostability.