Viable cryopreserved human bone graft exhibit superior osteogenic properties in mandibular lateral augmentation

Sci Rep. 2023 Jan 25;13(1):1422. doi: 10.1038/s41598-023-28170-6.

Abstract

Lack of bone volume to place dental implants is frequently a problem in the reconstruction of edentulous patients. Even though autografts are the gold standard for jaw regeneration, morbidity associated with the harvesting site stimulates the demand for other substitutes. The aim of this study is to characterize the incorporation and the osteogenic ability of a viable cryopreserved human bone graft (VC-HBG) in the mandibular augmentation in rats. Bone chips from fresh human vertebrae cadaveric donors were processed, cryoprotected and deep-frozen at - 80 °C maintaining its cell viability. A jaw augmentation model was used in 20 athymic nude rats allocated into 2 groups to either receive the VC-HBG or an acellular graft as control (A-HBG). The assessment of the grafts' incorporation was performed at 4 and 8 weeks by micro-CT, histomorphometry and immunohistochemistry. Bone volume gain was significantly higher for the VC-HBG group at both time points. At 4 weeks, the A-HBG group presented significantly higher mineral density, but at 8 weeks, the VC-HBG group showed significantly higher values than the A-HBG. There was no statistical difference between VC-HBG and A-HBG groups at 4-weeks for remaining graft particles, while at 8 weeks, the VC-HBG group showed significantly less graft remnants. Collagen I, osteopontin and tartrate-resistant acid phosphatase expression were significantly higher in the VC-HBG group at both time points, while osteocalcin expression was significantly higher in the VC-HBG group at 8-weeks compared to the A-HBG group. This experimental research demonstrated that the VC-HBG shows positive osteogenic properties, greater bone formation, higher rate of bone remodeling and a better overall incorporation in rats' mandibles compared to the A-HBG.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autografts
  • Bone Remodeling
  • Bone Substitutes*
  • Bone Transplantation
  • Humans
  • Mandible / surgery
  • Osteogenesis*
  • Rats

Substances

  • Bone Substitutes