Oxidatively Doped Tetrathiafulvalene-Based Metal-Organic Frameworks for High Specific Energy of Supercapatteries

ACS Appl Mater Interfaces. 2023 Feb 8;15(5):6621-6630. doi: 10.1021/acsami.2c17523. Epub 2023 Jan 25.

Abstract

Poor electrical conductivity and instability of metal-organic frameworks (MOFs) have limited their energy storage and conversion efficiency. In this work, we report the application of oxidatively doped tetrathiafulvalene (TTF)-based MOFs for high-performance electrodes in supercapatteries. Two isostructural MOFs, formulated as [M(py-TTF-py)(BPDC)]·2H2O (M = NiII (1), ZnII (2); py-TTF-py = 2,6-bis(4'-pyridyl)TTF; H2BPDC = biphenyl-4,4'-dicarboxylic acid), are crystallographically characterized. The structural analyses show that the two MOFs possess a three-dimensional 8-fold interpenetrating diamond-like topology, which is the first example for TTF-based dual-ligand MOFs. Upon iodine treatment, MOFs 1 and 2 are converted into oxidatively doped 1-ox and 2-ox with high crystallinity. The electrical conductivity of 1-ox and 2-ox is significantly increased by six∼seven orders of magnitude. Benefiting from the unique structure and the pronounced development of electrical conductivity, the specific capacities reach 833.2 and 828.3 C g-1 at a specific current of 1 A g-1 for 1-ox and 2-ox, respectively. When used as a battery-type positrode to assemble a supercapattery, the AC∥1-ox and AC∥2-ox (AC = activated carbon) present an energy density of 90.3 and 83.0 Wh kg-1 at a power density of 1.18 kW kg-1 and great cycling stability with 82% of original capacity and 92% columbic efficiency retention after 10,000 cycles. Ex situ characterization illustrates the ligand-dominated mechanism in the charge/discharge processes. The excellent electrochemical performances of 1-ox and 2-ox are rarely reported for supercapatteries, illustrating that the construction of unique highly dense and robust structures of MOFs followed by postsynthetic oxidative doping is an effective approach to fabricate MOF-based electrode materials.

Keywords: metal−organic frameworks; redox-active ligand; specific energy; supercapattery; tetrathiafulvalene.