Multi-omics analysis of the effects of dietary changes and probiotics on diet-induced obesity

Curr Res Food Sci. 2023 Jan 6:6:100435. doi: 10.1016/j.crfs.2023.100435. eCollection 2023.

Abstract

The consumption of a healthy diet is critical for maintaining and promoting human health. In the context of the rapid transformation from a high-fat diet (HFD) to a Mediterranean diet (MD) leading to major systemic changes, we explored the necessity of a transitional standard diet (TSD) between these two varied diets and the adjuvant effect of probiotics. HFD-fed mice were used for studying the changes and benefits of a dietary intervention and probiotic treatment. By measuring multiple systemic alterations such as weight (group B vs. group E, P < 0.05), liver function (AST, group C vs. group E, P < 0.001), and histopathology, we found that an MD, TSD and Bifidobacterium longum all contribute to alleviating lipid deposition and liver injury. The downregulation of IL-17 (group B vs. group E, P < 0.01) and MIP-1α (group B vs. group E, P < 0.001) also demonstrated the anti-inflammatory effects of the TSD. Moreover, we performed multi-omics analysis combined with the 16S sequencing, transcriptome and metabolome results and found that the TSD increased the abundance of the Lactobacillus genus (group C vs. group E, P < 0.01) and effectively lowered lipid accumulation and systemic inflammation. Furthermore, B. longum played an important role in the synergistic effect. The results showed that a TSD might be useful for HFD-induced obesity before drastic dietary changes, and probiotics were also beneficial.

Keywords: Dietary change; Lactobacillus genus; Probiotic; Transitional standard diet.