A cyclase that catalyses competing 2 + 2 and 4 + 2 cycloadditions

Nat Chem. 2023 Feb;15(2):177-184. doi: 10.1038/s41557-022-01104-x. Epub 2023 Jan 23.

Abstract

Cycloaddition reactions are among the most widely used reactions in chemical synthesis. Nature achieves these cyclization reactions with a variety of enzymes, including Diels-Alderases that catalyse concerted 4 + 2 cycloadditions, but biosynthetic enzymes with 2 + 2 cyclase activity have yet to be discovered. Here we report that PloI4, a β-barrel-fold protein homologous to the exo-selective 4 + 2 cyclase that functions in the biosynthesis of pyrroindomycins, catalyses competitive 2 + 2 and 4 + 2 cycloaddition reactions. PloI4 is believed to catalyse an endo-4 + 2 cycloaddition in the biosynthesis of pyrrolosporin A; however, when the substrate precursor of pyrroindomycins was treated with PloI4, an exo-2 + 2 adduct was produced in addition to the exo- and endo-4 + 2 adducts. Biochemical characterizations, computational analyses, (co)crystal structures and mutagenesis outcomes have allowed the catalytic versatility of PloI4 to be rationalized. Mechanistic studies involved the directed engineering of PloI4 to variants that produced the exo-4 + 2, endo-4 + 2 or exo-2 + 2 product preferentially. This work illustrates an enzymatic thermal 2 + 2 cycloaddition and provides evidence of a process through which an enzyme evolves along with its substrate for specialization and activity improvement.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Cycloaddition Reaction*