PROS1 shapes the immune-suppressive tumor microenvironment and predicts poor prognosis in glioma

Front Immunol. 2023 Jan 4:13:1052692. doi: 10.3389/fimmu.2022.1052692. eCollection 2022.

Abstract

Background: Glioma is the most malignant cancer in the brain. As a major vitamin-K-dependent protein in the central nervous system, PROS1 not only plays a vital role in blood coagulation, and some studies have found that it was associated with tumor immune infiltration. However, the prognostic significance of PROS1 in glioma and the underlying mechanism of PROS1 in shaping the tumor immune microenvironment (TIME) remains unclear.

Methods: The raw data (including RNA-seq, sgRNA-seq, clinicopathological variables and prognosis, and survival data) were acquired from public databases, including TCGA, GEPIA, CGGA, TIMER, GEO, UALCAN, and CancerSEA. GO enrichment and KEGG pathway analyses were performed using "cluster profiler" package and visualized by the "ggplot2" package. GSEA was conducted using R package "cluster profiler". Tumor immune estimation resource (TIMER) and spearman correlation analysis were applied to evaluate the associations between infiltration levels of immune cells and the expression of PROS1. qRT-PCR and WB were used to assay the expression of PROS1. Wound-healing assay, transwell chambers assays, and CCK-8 assays, were performed to assess migration and proliferation. ROC and KM curves were constructed to determine prognostic significance of PROS1 in glioma.

Results: The level of PROS1 expression was significantly increased in glioma in comparison to normal tissue, which was further certificated by qRT-PCR and WB in LN-229 and U-87MG glioma cells. High expression of PROS1 positively correlated with inflammation, EMT, and invasion identified by CancerSEA, which was also proved by downregulation of PROS1 could suppress cells migration, and proliferation in LN-229 and U-87MG glioma cells. GO and KEGG analysis suggested that PROS1 was involved in disease of immune system and T cell antigen receptor pathway. Immune cell infiltration analysis showed that expression of PROS1 was negatively associated with pDC and NK CD56 bright cells while positively correlated with Macrophages, Neutrophils in glioma. Immune and stromal scores analysis indicated that PROS1 was positively associated with immune score. The high level of PROS1 resulted in an immune suppressive TIME via the recruitment of immunosuppressive molecules. In addition, Increased expression of PROS1 was correlated with T-cell exhaustion, M2 polarization, poor Overall-Survival (OS) in glioma. And it was significantly related to tumor histological level, age, primary therapy outcome. The results of our experiment and various bioinformatics approaches validated that PROS1 was a valuable poor prognostic marker.

Conclusion: Increased expression of PROS1 was correlated with malignant phenotype and associated with poor prognosis in glioma. Besides, PROS1 could be a possible biomarker and potential immunotherapeutic target through promoting the glioma immunosuppressive microenvironment and inducing tumor-associated macrophages M2 polarization.

Keywords: PROS1; biomarker; exhausted T cell; glioma immunosuppressive microenvironment; prognosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Central Nervous System
  • Glioma* / genetics
  • Humans
  • Immunosuppression Therapy
  • Immunosuppressive Agents
  • Protein S
  • Tumor Microenvironment*

Substances

  • Immunosuppressive Agents
  • PROS1 protein, human
  • Protein S