Photoinduced Absorption Spectroscopy of Photoelectrocatalytic Methylene Blue Oxidation on Titania and Hematite: The Thermodynamic and Kinetic Impacts on Reaction Pathways

Adv Sci (Weinh). 2023 Mar;10(9):e2206685. doi: 10.1002/advs.202206685. Epub 2023 Jan 22.

Abstract

Photoelectrochemical oxidation of methylene blue is investigated, with particular focus on the difference in kinetics and thermodynamics of decoloration and mineralization employing photoinduced absorption spectroscopy. Hematite and titania photoanodes are used for the comparison of both reactions, which is determined to be associated with the depth of the valence band (3.2 vs 2.5 V for titania and hematite, respectively). Methylene blue is mineralized by the titania photoanode, however it is only oxidized to small fragments by hematite. Such difference is related to the valence band potential that provides the thermodynamic driving force for photogenerated holes in both materials. In addition, the kinetic competition of water oxidation is found to occur on titania by controlling the pH of the electrolyte. In the pH 14 electrolyte, mineralization of methylene blue is suppressed due to the faster and dominant kinetics of water oxidation, in contrast to the complete mineralization in the near neutral electrolyte where water oxidation kinetics are modest. These results clearly address the importance considering both thermodynamic and kinetic challenges of methylene blue oxidation, which has been thought to be an easy molecule to oxidize, as the model reaction in the application of photo(electro)catalysis using metal oxides.

Keywords: hematite; mineralization; photoinduced absorption spectroscopy; titania; valence band potential.