Heterostructured Ni3B/Ni nanosheets for excellent microwave absorption and supercapacitive application

J Colloid Interface Sci. 2023 Apr 15:636:627-636. doi: 10.1016/j.jcis.2023.01.048. Epub 2023 Jan 11.

Abstract

The development of electronic information technology has placed higher demands on microwave absorption materials (MAMs), especially the exploration of novel MAMs to broaden their application. At present, little attention has been given the wave absorption properties of transition metal borides (TMBs). In this work, a simple and economical method is developed to prepare Ni3B/Ni heterostructure nanosheets and their possible applications for microwave absorption (MA) and supercapacitor are evaluated. It is worth noting that Ni3B/Ni nanosheets exhibit excellent MA properties due to the aggregated nanosheet-like morphology of Ni3B/Ni with enhancing interfacial polarization, as well as the synergistic effect of dielectric and magnetic losses. It is observed in experiments that the minimum reflection loss value of Ni3B/Ni is -41.60 dB at 16.8 GHz. Moreover, the maximum effective absorption bandwidth can reach 3.28 GHz. Furthermore, Ni3B/Ni has good energy storage characteristics and is able to provide a specific capacity of 1150.6F g-1 at a current density of 1 A g-1. Meanwhile, it has the ability to maintain an initial capacity of 74.4 % after 1000 cycles at a current density of 10 A g-1. Therefore, this study provides an idea to explore TMBs as high-performance MA and supercapacitor materials.

Keywords: Heterostructure; Microwave absorption; Ni(3)B/Ni nanosheets; Supercapacitors; Transition metal borides.