A Randomized Controlled Trial of Changes in Fluid Distribution across Menstrual Phases with Creatine Supplementation

Nutrients. 2023 Jan 13;15(2):429. doi: 10.3390/nu15020429.

Abstract

This study examined the effects of creatine (Cr) loading on body mass (BM) and fluid markers of total body water (TBW), extra-cellular fluid (ECF), and intra-cellular fluid (ICF) across the menstrual cycle (MC). Thirty moderately active females, either naturally-menstruating (NM) or using hormonal contraceptives (HC), were randomized to Cr (Cr; 4 × 5 g/day of creatine monohydrate for 5 days; n = 15) or a non-caloric placebo (PL; n = 15) using a double-blind, placebo-controlled design, with a menstrual phase crossover. BM, TBW, ECF, and ICF were measured at pre- and post-supplementation in randomized order of follicular phase (FP; NM: MC days 0−8, HC: inactive pill days) or luteal phase (LP; NM: ≤15 days from next projected cycle start date, HC: active pill days) using bioelectrical impedance spectroscopy. Acute hydration status and salivary estrogen were used as covariates. Change in BM was not different between groups across MC ([PL-Cr] Δ 0.40 ± 0.50 kg; p = 0.427) or between MC phase across groups ([FP-LP] Δ 0.31 ± 0.48 kg; p = 0.528). TBW (p = 0.802), ECF (p = 0.373), and ICF (p = 0.795) were not different between supplement groups at pre-supplementation/FP time points. There were no significant differences between the NM and HC subjects at any time point, for any outcome (p > 0.05). Following LP supplementation, significant changes were observed in TBW (Cr: Δ 0.83 ± 0.38 L, PL: Δ −0.62 ± 0.38 L; p = 0.021), ECF (Cr: Δ 0.46 ± 0.15 L, PL: Δ −0.19 ± 0.15 L; p = 0.013), and ICF (Cr: Δ 0.74 ± 0.23 L, PL: Δ −0.02 ± 0.23 L; p = 0.041). These data demonstrate an increase in all fluid compartments in the LP following Cr loading, without observed alterations in body weight for females.

Keywords: dietary supplement; female physiology; total body water.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Body Fluid Compartments
  • Body Weight
  • Creatine*
  • Dietary Supplements*
  • Double-Blind Method
  • Extracellular Fluid
  • Female
  • Humans

Substances

  • Creatine

Grants and funding

This research received no external funding. The creatine monohydrate used in this study was donated free of charge from AlzChem Trostberg GmbH (Trostberg, Germany).