Design, Synthesis, Docking Study, and Antiproliferative Evaluation of Novel Schiff Base-Benzimidazole Hybrids with VEGFR-2 Inhibitory Activity

Molecules. 2023 Jan 4;28(2):481. doi: 10.3390/molecules28020481.

Abstract

A new series of Schiff-benzimidazole hybrids 3a-o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.

Keywords: Schiff; VEGFR; anti-proliferative; apoptosis; benzimidazole; docking; hybrids.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Apoptosis
  • Benzimidazoles / chemistry
  • Cell Proliferation
  • Drug Design
  • Drug Screening Assays, Antitumor
  • Molecular Docking Simulation
  • Molecular Structure
  • Schiff Bases / pharmacology
  • Sorafenib / pharmacology
  • Structure-Activity Relationship
  • Vascular Endothelial Growth Factor Receptor-2* / antagonists & inhibitors

Substances

  • Antineoplastic Agents
  • Benzimidazoles
  • Schiff Bases
  • Sorafenib
  • Vascular Endothelial Growth Factor Receptor-2