Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains

Materials (Basel). 2023 Jan 11;16(2):727. doi: 10.3390/ma16020727.

Abstract

This study aims to achieve an ultrafine-grained (UFG) Al 2024 alloy superplasticity at temperatures lower than the traditional ones for commercial Al alloys (400-500 °C). The UFG structure with a mean grain size of 100 nm produced in the alloy by high-pressure torsion at room temperature provided a very high strength-microhardness (HV0.1) of 286 ± 4, offset yield strength (σ0.2) of 828 ± 9 MPa, and ultimate tensile strength (σUTS) of 871 ± 6 MPa at elongation to failure (δ) of 7 ± 0.2%. Complex tensile tests were performed at temperatures from 190 to 270 °C and strain rates from 10-2 to 5 × 10-5 s-1, and the values of flow stress, total elongation and strain rate-sensitivity coefficient were determined. The UFG alloy was shown to exhibit superplastic behavior at test temperatures of 240 and 270 °C. For the first time, 400% elongation was achieved in the alloy at an unusually low temperature of 270 °C (0.56 Tm) and strain rate of 10-3 s-1. The UFG 2024 alloy after superplastic deformation was found to have higher strength (150-160 HV) than that after the standard strengthening heat treatment T6.

Keywords: aluminum alloys; strength; superplasticity; ultrafine-grained materials.