Progresses, Challenges, and Prospects of CRISPR/Cas9 Gene-Editing in Glioma Studies

Cancers (Basel). 2023 Jan 6;15(2):396. doi: 10.3390/cancers15020396.

Abstract

Glioma refers to a tumor that is derived from brain glial stem cells or progenitor cells and is the most common primary intracranial tumor. Due to its complex cellular components, as well as the aggressiveness and specificity of the pathogenic site of glioma, most patients with malignant glioma have poor prognoses following surgeries, radiotherapies, and chemotherapies. In recent years, an increasing amount of research has focused on the use of CRISPR/Cas9 gene-editing technology in the treatment of glioma. As an emerging gene-editing technology, CRISPR/Cas9 utilizes the expression of certain functional proteins to repair tissues or treat gene-deficient diseases and could be applied to immunotherapies through the expression of antigens, antibodies, or receptors. In addition, some research also utilized CRISPR/Cas9 to establish tumor models so as to study tumor pathogenesis and screen tumor prognostic targets. This paper mainly discusses the roles of CRISPR/Cas9 in the treatment of glioma patients, the exploration of the pathogenesis of neuroglioma, and the screening targets for clinical prognosis. This paper also raises the future research prospects of CRISPR/Cas9 in glioma, as well as the opportunities and challenges that it will face in clinical treatment in the future.

Keywords: CRISPR/Cas9; glioma; immunotherapy; mechanism research; tumor model.

Publication types

  • Review