Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans

Cells. 2023 Jan 4;12(2):219. doi: 10.3390/cells12020219.

Abstract

Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.

Keywords: anti-inflammatory; aspirin; molecular targets; peroxidases; protein phosphorylation; receptors; salicylic acid; systemic acquired resistance.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspirin
  • Humans
  • Plants* / metabolism
  • Salicylic Acid* / metabolism

Substances

  • Salicylic Acid
  • Aspirin

Grants and funding

This research was supported by the China National Major Research and Development Plan (grant no. 0111900), the Zhejiang Provincial Natural Science Foundation of China (grant no. LQ20C020002) and the U.S. National Science Foundation (IOS1758767).