A High-Frequency Mechanical Scanning Ultrasound Imaging System

Biosensors (Basel). 2022 Dec 27;13(1):32. doi: 10.3390/bios13010032.

Abstract

High-frequency ultrasound has developed rapidly in clinical fields such as cardiovascular, ophthalmology, and skin with its high imaging resolution. However, the development of multi-elements high-frequency ultrasonic transducers and multi-channel high-frequency ultrasound imaging systems is extremely challenging. Here, a high-frequency ultrasound imaging system based on mechanical scanning was proposed in this paper. It adopts the method of reciprocating feed mechanism, which can achieve reciprocating scanning in the 14 mm range at 168 mm/s with a small 60 MHz transducer. A single-channel high-frequency ultrasonic imaging system consisting of the transmitting module, analog front end, acquisition module, and FPGA control module was developed. To overcome the non-uniformity of mechanical scanning, the ultrasound images are compensated according to the motion trajectory. The wire target and ex vivo tissue experiments have shown that the system can obtain an imaging resolution of 51 μm, imaging depth of 8 mm, and imaging speed of 12 fps. This high-frequency mechanical scanning ultrasound imaging system has the characteristics of simple structure, high-frequency, real-time, and good imaging performance, which can meet the clinical needs of high-resolution ultrasound images.

Keywords: high imaging resolution; high-frequency ultrasound; mechanical scanning.

MeSH terms

  • Equipment Design
  • Phantoms, Imaging
  • Skin*
  • Transducers*
  • Ultrasonography / methods