Biotransformation of d-Xylose-Rich Rice Husk Hydrolysate by a Rice Paddy Soil Bacterium, Priestia sp. Strain JY310, to Low Molecular Weight Poly(3-hydroxybutyrate)

Biomolecules. 2023 Jan 9;13(1):131. doi: 10.3390/biom13010131.

Abstract

Poly(3-hydroxybutyrate) (PHB) is a versatile thermoplastic with superior biodegradability and biocompatibility that is intracellularly accumulated by numerous bacterial and archaeal species. Priestia sp. strain JY310 that was able to efficiently biotransform reducing sugars in d-xylose-rich rice husk hydrolysate (reducing sugarRHH) to PHB was isolated from the soil of a rice paddy. Reducing sugarRHH including 12.5% d-glucose, 75.3% d-xylose, and 12.2% d-arabinose was simply prepared using thermochemical hydrolysis of 3% H2SO4-treated rice husk for 15 min at 121 °C. When cultured with 20 g/L reducing sugarRHH under optimized culture conditions in a batch bioreactor, Priestia sp. strain JY310 could produce PHB homopolymer up to 50.4% of cell dry weight (6.2 g/L). The melting temperature, heat of fusion, and thermal decomposition temperature of PHB were determined to be 167.9 °C, 92.1 J/g, and 268.1 °C, respectively. The number average and weight average molecular weights of PHB with a broad polydispersity index value (4.73) were estimated to be approximately 16.2 and 76.8 kg/mol, respectively. The findings of the present study suggest that Priestia sp. strain JY310 can be exploited as a good candidate for the low-cost production of low molecular weight PHB with improved biodegradability and reduced brittleness from inexpensive agricultural waste hydrolysates.

Keywords: PHB; Priestia sp.; biotransformation; low molecular weight; poly(3-hydroxybutyrate); rice husk hydrolysate; thermochemical hydrolysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxybutyric Acid
  • Bacillaceae* / metabolism
  • Bacteria / metabolism
  • Biotransformation
  • Hydroxybutyrates / metabolism
  • Molecular Weight
  • Oryza* / metabolism
  • Soil
  • Xylose / metabolism

Substances

  • 3-Hydroxybutyric Acid
  • Xylose
  • Soil
  • Hydroxybutyrates
  • poly-beta-hydroxybutyrate