Reformulating nonequilibrium steady states and generalized Hopfield discrimination

Phys Rev E. 2022 Dec;106(6-1):064128. doi: 10.1103/PhysRevE.106.064128.

Abstract

Despite substantial progress in nonequilibrium physics, steady-state (s.s.) probabilities remain intractable to analysis. For a Markov process, s.s. probabilities can be expressed in terms of transition rates using the graph-theoretic matrix-tree theorem (MTT). The MTT reveals that, away from equilibrium, s.s. probabilities become globally dependent on all rates, with expressions growing exponentially in the system size. This overwhelming complexity and lack of thermodynamic interpretation have greatly impeded analysis. Here we show that s.s. probabilities are proportional to the average of exp(-S(P)), where S(P) is the entropy generated along minimal paths P in the graph, and the average is taken over a probability distribution on spanning trees. Assuming Arrhenius rates, this "arboreal" distribution becomes Boltzmann-like, with the energy of a tree being its total edge barrier energy. This reformulation offers a thermodynamic interpretation that smoothly generalizes equilibrium statistical mechanics and reorganizes the expression complexity: the number of distinct minimal-path entropies depends not on graph size but on the entropy production index, a measure of nonequilibrium complexity. We demonstrate the power of this reformulation by extending Hopfield's analysis of discrimination by kinetic proofreading to any graph with index 1. We derive a general formula for the error ratio and use it to show how local energy dissipation can yield optimal discrimination through global synergy.

MeSH terms

  • Entropy
  • Markov Chains
  • Physical Phenomena
  • Probability
  • Thermodynamics*