Insect Freeze-Tolerance Downunder: The Microbial Connection

Insects. 2023 Jan 13;14(1):89. doi: 10.3390/insects14010089.

Abstract

Insects that are freeze-tolerant start freezing at high sub-zero temperatures and produce small ice crystals. They do this using ice-nucleating agents that facilitate intercellular ice growth and prevent formation of large crystals where they can damage tissues. In Aotearoa/New Zealand the majority of cold adapted invertebrates studied survive freezing at any time of year, with ice formation beginning in the rich microbiome of the gut. Some freeze-tolerant insects are known to host symbiotic bacteria and/or fungi that produce ice-nucleating agents and we speculate that gut microbes of many New Zealand insects may provide ice-nucleating active compounds that moderate freezing. We consider too the possibility that evolutionary disparate freeze-tolerant insect species share gut microbes that are a source of ice-nucleating agents and so we describe potential transmission pathways of shared gut fauna. Despite more than 30 years of research into the freeze-tolerant mechanisms of Southern Hemisphere insects, the role of exogenous ice-nucleating agents has been neglected. Key traits of three New Zealand freeze-tolerant lineages are considered in light of the supercooling point (temperature of ice crystal formation) of microbial ice-nucleating particles, the initiation site of freezing, and the implications for invertebrate parasites. We outline approaches that could be used to investigate potential sources of ice-nucleating agents in freeze-tolerant insects and the tools employed to study insect microbiomes.

Keywords: Aotearoa; Celatoblatta; Hemideina; Sigaus; alpine insects; freeze tolerance; genomics; gut microbes; ice-nucleating agent; microbiome.

Publication types

  • Review

Grants and funding

This research was funded by Massey University, RM22191; RM22902; RM23764.