Yishen Xiezhuo formula ameliorates the development of cisplatin-induced acute kidney injury by attenuating renal tubular epithelial cell senescence

Ann Transl Med. 2022 Dec;10(24):1392. doi: 10.21037/atm-22-5415.

Abstract

Background: Although cisplatin (DDP) is an important clinical anti-tumor drug, its use is limited by its nephrotoxicity. How to avoid the renal injury incurred by platinum drugs and improve the clinical efficiency of platinum drugs use has become an urgent clinical problem. Previous studies have verified that Chinese medicine has definite effects on acute kidney injury (AKI). Yishen Xiezhuo formula (YSXZ) is a traditional Chinese medicine (TCM) compound which is an effective clinical drug for AKI, but its mechanism remains unclear.

Methods: In our research, an AKI model was induced by DDP in human renal tubular epithelial cell (HKC) lines in the in vitro study. The mechanism of the YSXZ on cell senescence was analyzed by Cell Counting Kit-8 (CCK-8), senescence-associated β-galactosidase (SA-β-Gal) staining, western blot, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Network pharmacology was used to analyze the role of YSXZ against AKI.

Results: Compared with the control group, the cells in the DDP intervention group were significantly senescent. Compared with DDP group, YSXZ decreased the number of SA-β-Gal-positive senescence cells, down regulated the expression of senescence-related proteins, reduced the release of senescence-related secreted phenotypic factors, and reversed the phenomenon of cell cycle S-phase arrest. Network pharmacology and experimental studies showed that the mitogen-activated protein kinase (MAPK) signaling pathway played a central role.

Conclusions: Our present results suggested that YSXZ ameliorated the development of DDP-induced AKI by attenuating renal tubular epithelial cell (RTEC) senescence via alleviating the activation of MAPK pathway.

Keywords: Yishen Xiezhuo formula (YSXZ); acute kidney injury (AKI); cell senescence; cisplatin (DDP); network pharmacology.