A deep learning model incorporating spatial and temporal information successfully detects visual field worsening using a consensus based approach

Sci Rep. 2023 Jan 19;13(1):1041. doi: 10.1038/s41598-023-28003-6.

Abstract

Glaucoma is a leading cause of irreversible blindness, and its worsening is most often monitored with visual field (VF) testing. Deep learning models (DLM) may help identify VF worsening consistently and reproducibly. In this study, we developed and investigated the performance of a DLM on a large population of glaucoma patients. We included 5099 patients (8705 eyes) seen at one institute from June 1990 to June 2020 that had VF testing as well as clinician assessment of VF worsening. Since there is no gold standard to identify VF worsening, we used a consensus of six commonly used algorithmic methods which include global regressions as well as point-wise change in the VFs. We used the consensus decision as a reference standard to train/test the DLM and evaluate clinician performance. 80%, 10%, and 10% of patients were included in training, validation, and test sets, respectively. Of the 873 eyes in the test set, 309 [60.6%] were from females and the median age was 62.4; (IQR 54.8-68.9). The DLM achieved an AUC of 0.94 (95% CI 0.93-0.99). Even after removing the 6 most recent VFs, providing fewer data points to the model, the DLM successfully identified worsening with an AUC of 0.78 (95% CI 0.72-0.84). Clinician assessment of worsening (based on documentation from the health record at the time of the final VF in each eye) had an AUC of 0.64 (95% CI 0.63-0.66). Both the DLM and clinician performed worse when the initial disease was more severe. This data shows that a DLM trained on a consensus of methods to define worsening successfully identified VF worsening and could help guide clinicians during routine clinical care.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Consensus
  • Deep Learning*
  • Disease Progression
  • Female
  • Glaucoma* / diagnosis
  • Humans
  • Intraocular Pressure
  • Middle Aged
  • Retrospective Studies
  • Vision Disorders / diagnosis
  • Visual Field Tests / methods
  • Visual Fields