Role of trapped liquid in flow boiling inside micro-porous structures: pore-scale visualization and heat transfer enhancement

Sci Bull (Beijing). 2021 Sep 30;66(18):1885-1894. doi: 10.1016/j.scib.2021.05.019. Epub 2021 May 24.

Abstract

Flow boiling is an important heat dissipation method for cooling high heat flux surfaces in many industrial applications. The heat transfer can be further enhanced by using porous media surfaces due to their high specific surface areas. However, although flow boiling in channels is well understood, the phase-change behavior with the additional capillary effect induced by the porous structures is not well understood, and the design of the porous structures is difficult to avoid dryout and over-temperature accidents. A pore-scale lab-on-a-chip method was used here to investigate the flow boiling heat transfer characteristics inside micro-porous structures. The flow patterns, captured in the two-phase region with a uniform pore-throat size of 30 μm, showed that liquid was trapped in the pore-throat structures as both dispersed liquid bridges and liquid films. Moreover, the liquid film was shown to be moving on the wet solid surface by laser-induced fluorescence and particle tracking. A theoretical analysis showed that the capillary pressure difference between adjacent liquid bridges could drive the liquid film flows, which helped maintain the coolant supply in the two-phase region. The pore-throat parameters could be designed to enhance the capillary pressure difference with multiple throat sizes of 10 - 90 μm which would enhance the heat transfer 5% - 10% with a 5% - 23% pressure drop reduction. This research provides another method for improving the flow boiling heat transfer through the porous structure design besides changing the surface wettability.

Keywords: Film flow; Flow boiling; Heat transfer enhancement; Liquid bridge; Micro-porous structure; Trapped liquid.