Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation

Sci Bull (Beijing). 2021 May 30;66(10):1003-1012. doi: 10.1016/j.scib.2020.11.002. Epub 2020 Nov 9.

Abstract

Electrocatalytic hydrogenation (ECH) enables the sustainable production of chemicals under ambient condition; however, suffers from serious competition with hydrogen (H2) evolution and the use of precious metals as electrocatalysts. Herein, molybdenum disulfide is for the first time developed as an efficient and noble-metal-free catalyst for ECH via in situ intercalation of ammonia or alkyl-amine cations. This interlayer engineering regulates phase transition (2H → 1 T), and effectively ameliorates electronic configurations and surface hydrophobicity to promote the ECH of biomass-derived oxygenates, while prohibiting H2 evolution. The optimal one intercalated by dimethylamine (MoS2-DMA) is capable of hydrogenating furfural (FAL) to furfuryl alcohol with high Faradaic efficiency of 86.3%-73.3% and outstanding selectivity of >95.0% at -0.25 to -0.65 V (vs. RHE), outperforming MoS2 and other conventional metals. Such prominent performance stems from the enhanced chemisorption and surface hydrophobicity. The chemisorption of H intermediate and FAL, synchronously strengthened on the edge-sites of MoS2-DMA, accelerates the surface elementary step following Langmuir-Hinshelwood mechanism. Moreover, the improved hydrophobicity benefits FAL affinity to overcome diffusion limitation. Discovering the effective modulation of MoS2 from a typical H2 evolution electrocatalyst to a promising candidate for ECH, this study broadens the scope to exploit catalysts used for electrochemical synthesis.

Keywords: Binding energy; Electrocatalytic hydrogenation; Interlayer engineering; Molybdenum disulfide; Surface hydrophobicity.