Metabolism of resistant starch RS3 administered in combination with Lactiplantibacillus plantarum strain 84-3 by human gut microbiota in simulated fermentation experiments in vitro and in a rat model

Food Chem. 2023 Jun 15:411:135412. doi: 10.1016/j.foodchem.2023.135412. Epub 2023 Jan 5.

Abstract

This study aimed to investigate the metabolic and population responses of gut microbiota to resistant starch (RS3) in the presence of exogenous Lactiplantibacillus plantarum strain 84-3 (Lp84-3) in vitro and in vivo. Lp84-3 promoted acetate, propionate, and butyrate production from RS3 by gut microbiota and increased Lactobacillus and Blautia contents in vitro. Furthermore, in the presence of Lp84-3, starch granules presented a "dot-by-hole" fermentation pattern. Administration of Lp84-3 with RS3 increased the level of SCFA-producing Faecalibaculum, Parabacteroides, Alistipes, and Anaeroplasma in the faeces of rates, with Lactobacillus and Akkermansia representing the key genera that significantly promoted SCFAs, especially propionate and butyrate. Lp84-3 with RS3 promoted genes related to tryptophan synthase (EC 4.2.1.20) and beta-glucosidase (EC 3.2.1.21) in faecal bacteria. Our findings highlight the ability of Lp84-3 to enhance RS3 degradation, possibly by promoting SCFA-producing bacteria, and indicate that Lp84-3 could be a potential probiotic with a beneficial effect on gut microbiota.

Keywords: Gut microbiota; Lactiplantibacillus plantarum; Resistant starch; Short-chain fatty acid; Simulated fermentation.

MeSH terms

  • Animals
  • Bacteria / metabolism
  • Bacteroidetes
  • Butyrates / metabolism
  • Fatty Acids, Volatile / metabolism
  • Feces / microbiology
  • Fermentation
  • Gastrointestinal Microbiome*
  • Humans
  • Lactobacillus / metabolism
  • Propionates / metabolism
  • Rats
  • Resistant Starch / metabolism

Substances

  • Resistant Starch
  • Fatty Acids, Volatile
  • Propionates
  • Butyrates