Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants

Small. 2023 Apr;19(15):e2206154. doi: 10.1002/smll.202206154. Epub 2023 Jan 18.

Abstract

As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.

Keywords: SARS-CoV-2; covalent functionalization; fullerene; sulfated materials; virus inhibition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Fullerenes* / pharmacology
  • Humans
  • Protein Binding
  • SARS-CoV-2

Substances

  • polyglycerol
  • Fullerenes

Supplementary concepts

  • SARS-CoV-2 variants