Genome-wide identification of MAXs genes for strigolactones synthesis/signaling in solanaceous plants and analysis of their potential functions in tobacco

PeerJ. 2023 Jan 12:11:e14669. doi: 10.7717/peerj.14669. eCollection 2023.

Abstract

The more axillary growth (MAX) gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although MAX genes play vital roles in plant growth and development, characterization of the MAX gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the MAX family were identified in representative Solanaceae crops and classified into four groups. The physicochemical properties, gene structure, conserved protein structural domains, cis-acting elements, and expression patterns could be clearly distinguished between the biosynthetic and signal transduction subfamilies; furthermore, MAX genes in tobacco were found to be actively involved in the regulation of meristem development by responding to hormones. MAX genes involved in SL biosynthesis were more responsive to abiotic stresses than genes involved in SL signaling. Tobacco MAX genes may play an active role in stress resistance. The results of this study provide a basis for future in-depth analysis of the molecular mechanisms of MAX genes in tobacco meristem development and stress resistance.

Keywords: Abiotic stress; Cis-elements; MAXs gene family; Shoot development; Strigolactone biosynthesis; Strigolactone signal transduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lactones / metabolism
  • Nicotiana* / genetics
  • Plant Proteins* / genetics
  • Signal Transduction / genetics

Substances

  • GR24 strigolactone
  • Plant Proteins
  • Lactones

Grants and funding

This research was financially supported by The Agricultural Science and Technology Innovation Program (ASTIP‑TRIC02), the Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences (2019B05) and the China Tobacco Genome Project (110202101036(JY-13)). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.