Contrasting symbolic and non-symbolic numerical representations in a joint classification task

Psychon Bull Rev. 2023 Aug;30(4):1422-1430. doi: 10.3758/s13423-023-02246-w. Epub 2023 Jan 17.

Abstract

Both symbolic (digits) and non-symbolic (dots) numerals are spatially coded, with relatively small numbers being responded faster with a left key and large numbers being responded faster with a right key (spatial-numerical association of response codes [SNARC]). The idea of format independent SNARC seems to support the existence of a common system for symbolic and non-symbolic numerical representations, although evidence in the field is still mixed. The aim of the present study is to investigate whether symbolic and non-symbolic numerals interact in the SNARC effect when both information is simultaneously displayed. To do so, participants were presented with dice-like patterns, with digits being used instead of dots. In two separate magnitude classification tasks, participants had to respond either to the number of digits presented on the screen or to their numerical size. In the non-symbolic task, they had to judge whether the digits on the screen were more or less than three, irrespective of the numerical value of the digits. In the symbolic task, participants had to judge whether the digits on the screen were numerically smaller or larger than three, irrespective of the number of digits being present. The results show a consistent SNARC effect in the symbolic task and no effect in the non-symbolic one. Furthermore, congruency between symbolic and non-symbolic numerals did not modulate the response patterns, thus supporting the idea of independent representations and questioning some propositions of current theoretical accounts.

Keywords: A theory of magnitude; Approximate number system; Digit; Numerosity; SNARC; Working memory.

MeSH terms

  • Humans
  • Reaction Time / physiology
  • Space Perception* / physiology