Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals

Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2117503120. doi: 10.1073/pnas.2117503120. Epub 2023 Jan 17.

Abstract

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.

Keywords: calcium; mammals; ryanodine receptor; skeletal muscle; thermogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphibians
  • Animals
  • Calcium / metabolism
  • Humans
  • Muscle, Skeletal* / metabolism
  • Protein Isoforms / metabolism
  • Ryanodine / metabolism
  • Ryanodine Receptor Calcium Release Channel* / metabolism
  • Sarcoplasmic Reticulum / metabolism
  • Thermogenesis

Substances

  • Calcium
  • Protein Isoforms
  • Ryanodine
  • Ryanodine Receptor Calcium Release Channel