Effect of Hydrophobicity and Salt on the Temperature Responsiveness of Polymeric Micelles Consisting of Hydrophobic and Sulfobetaine Chains

Langmuir. 2023 Jan 31;39(4):1444-1455. doi: 10.1021/acs.langmuir.2c02778. Epub 2023 Jan 17.

Abstract

The effect of the hydrophobicity of the core part and salt on the temperature responsiveness of polymeric micelles composed of sulfobetaine and hydrophobic blocks was investigated. Poly(sulfopropyl dimethylammonium propylacrylamide) (PSPP) was used as the sulfobetaine; poly(2-ethylhexyl acrylate) (PEHA), poly(n-butyl acrylate) (PnBA), poly(ethyl acrylate) (PEA), or poly(n-hexyl acrylate) (PnHA) was used as the hydrophobic polymer. Measurement of the transmittance revealed that the transition temperature of the sulfobetaine homopolymer could be controlled by adjusting the concentration, the degree of polymerization (DP), and the concentration of the added salt. The effect of the anionic species of the added salt due to the chemical structural properties of the sulfobetaine chain was consistent with the order of ionic species with strong structural destruction in the Hofmeister series. The temperature response and micelle formation behavior of the polymeric micelles according to the hydrophobicity of the core part and the preparation method were examined by static light scattering (SLS), fluorescence measurement with pyrene, dynamic light scattering (DLS), transmittance, and atomic force microscopy (AFM). Micelles that had EHA (solubility in water was 0.01 g/100 mL) as the core and did not show temperature responsiveness expressed temperature responsiveness at a lower hydrophobicity (solubility of nBA in water was 0.14 g/100 mL). nBA-b-SPP did not show temperature responsiveness due to the block ratio. However, when micelles were prepared by dialysis, smaller and more stable micelles could be formed in an equilibrium state, and temperature responsiveness was observed. Their transition temperature can be controlled by adjusting the ratio of the sulfobetaine blocks, the hydrophobicity of the core part, the concentration of the polymer aqueous solution, and the concentration of the added salt. Furthermore, like the sulfobetaine homopolymer, the effect depended on the anionic species of the added salt.