Kupffer Cells Contested as Early Drivers in the Pathogenesis of Primary Sclerosing Cholangitis

Am J Pathol. 2023 Apr;193(4):366-379. doi: 10.1016/j.ajpath.2022.12.008. Epub 2023 Jan 13.

Abstract

Primary sclerosing cholangitis (PSC) is an idiopathic chronic immune-mediated cholestatic liver disease characterized by fibro-inflammatory bile duct strictures, progressive hepatobiliary fibrosis, and gut-liver axis disruption. The pathophysiology of PSC remains insufficiently characterized, which hampers the development of effective therapies. Hepatic macrophages (MFs) such as Kupffer cells (KCs) are implicated in PSC pathogenesis, but their exact role is unclear. Using the latest markers to discriminate resident KCs (ResKCs) from their monocyte-derived counterparts (MoKCs), and two models of intrahepatic and extrahepatic cholestasis, respectively, this study showed that CLEC4F+TIM4+ ResKCs were depleted after chronic cholestatic liver injury. The infiltrating CLEC4F+TIM4- MoKCs were already enriched during the acute phase of PSC. Transcriptional profiling of hepatic MF subsets during early cholestatic injury indicated that ResKCs were indeed activated and that MoKCs expressed higher levels of pro-inflammatory and proliferative markers compared with those of ResKCs. As indicated in experiments with Clec4fDTR transgenic mice, conditional depletion of KCs, before and during early cholestasis induction, had no effect on the composition of the hepatic myeloid cell pool following injury progression and did not affect disease outcomes. Taken together, these results provide new insights into the heterogeneity of the MF pool during experimental PSC and evidence that depletion of resident and activated KCs during sclerosing cholangitis does not affect disease outcome in mice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cholangitis, Sclerosing* / pathology
  • Cholestasis* / pathology
  • Kupffer Cells / pathology
  • Liver / pathology
  • Mice