Decomposition and humification process of domestic biodegradable waste by black soldier fly (Hermetia illucens L.) larvae from the perspective of dissolved organic matter

Chemosphere. 2023 Mar:317:137861. doi: 10.1016/j.chemosphere.2023.137861. Epub 2023 Jan 12.

Abstract

Black soldier fly larvae (Hermitia illucens L.) (BSFL) bioconversion is a promising technology for domestic biodegradable waste (DBW) management and resource recovery. However, little is known about the DBW biodegradation during the BSFL bioconversion from the perspective of dissolved organic matter (DOM). In the current study, field tests were conducted on a full-scale BSFL bioconversion facility with treatment capacity of 15 tons DBW/day. Composition of DOM in DBW were investigated by spectral analysis (UV-vis, fluorescence, and Fourier Transform Infrared spectroscopy (FT-IR)), coupled with enzyme activity analysis. After BSFL bioconversion, DOM concentrations, total carbon and total nitrogen in residues decreased by 51.5%, 18.3% and 19.9%, respectively. Meanwhile, enzymes like catalase, lipase, protease, sucrase, urease and cellulase significantly increased (9.28%-56.3%). The specific UV absorbance at 254 nm and 280 nm (SUVA254, SUVA280), the area at 226-400 nm (A226-400) and slope in the 280-400 nm region (S280-400) of DOM increased by 230%, 186%, 143% and 398%, respectively. Moreover, the characteristic peaks at 1636, 1077 and 1045 cm-1 in FT-IR increased continuously, with a significant decrease in peak at 1124 and 1572 cm-1. DOM spectral data show that BSFL decomposed the carboxylic, cellulose and aliphatic components, resulting in the increase of oxygen-containing functional groups (e.g., hydroxyl, carboxyl, carbonyl) and aromatic compounds. Furthermore, fluorescence profiles show that Region Ⅰ, Ⅱ (aromatic proteins) and Ⅳ (soluble microbial byproducts) decreased while Region Ⅴ (humic-like substances) increased significantly. Humification index increased by 122% while biological index decreased by 18.0%, indicating a significant increase in degree of humification and stabilization of the residues. The current evidence provides a theoretical basis for technical re-innovation and improving economic potential of BSFL technology.

Keywords: Biotransformation; Dissolved organic matter; Larvae; Organic waste; Spectral analysis.

MeSH terms

  • Animals
  • Diptera*
  • Dissolved Organic Matter*
  • Humic Substances / analysis
  • Larva
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Dissolved Organic Matter
  • Humic Substances