An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting

Environ Sci Pollut Res Int. 2023 Mar;30(14):41937-41953. doi: 10.1007/s11356-023-25194-3. Epub 2023 Jan 14.

Abstract

In recent years, traditional energy sources have caused a variety of negative impacts on the environment, and reducing carbon emissions is a top priority. The development of renewable energy technology is the key to transform the energy structure. Renewable energy represented by wind energy and photovoltaics has abundant reserves so they are connected to the grid system on a large scale. However, because of natural energy's randomness, renewable energy power generation poses potential risks to energy production and grid security. By making short-term forecasts of renewable energy generation power, the uncertainty of energy generation can be reduced, and it is crucial to study renewable energy forecasting techniques. This paper proposes an integrated forecasting system for renewable energy sources. Firstly, ensemble empirical mode decomposition is used for data preprocessing, and stationarity analysis is used for modal identification; then, support vector regression optimized by sparrow search algorithm and statistical methods are combined to make forecast according to different characteristics of the series respectively; finally, the feasibility of this method in renewable energy time series prediction is verified by experiments. The experiments prove that the proposed model effectively improves the accuracy and prediction performance on ultra-short-term renewable energy forecasting; and it has good applicability and competitiveness with different forecasting scenarios and characteristics, which satisfy the actual forecasting requirements in terms of operational efficiency and accuracy, thus providing a technical basis for the effective utilization of renewable energy.

Keywords: EEMD; Hybrid model; Renewable energy; SSA; Ultra-short-term prediction.

MeSH terms

  • Algorithms*
  • Energy-Generating Resources
  • Forecasting
  • Machine Learning
  • Renewable Energy*
  • Wind