Enantio- and Z-selective synthesis of functionalized alkenes bearing tertiary allylic stereogenic center

Sci Adv. 2023 Jan 13;9(2):eadf8742. doi: 10.1126/sciadv.adf8742. Epub 2023 Jan 13.

Abstract

Olefins are ubiquitous in biologically active molecules and frequently used as building blocks in chemical transformations. However, although many strategies exist for the synthesis of stereodefined E-olefines, their thermodynamically less stable Z counterparts are substantially more demanding, while access to those bearing an allylic stereocenter with an adjacent reactive functionality remains unsolved altogether. Even the classic Wittig reaction, arguably the most versatile and widely used approach to construct Z-alkenes, falls short for the synthesis of these particularly challenging yet highly useful structural motives. Here, we report a general methodology for Z-selective synthesis of functionalized chiral alkenes that establishes readily available alkene-derived phosphines as an alternative to alkylating reagents in Wittig olefination, thus offering previously unidentified retrosynthetic disconnections for the formation of functionalized disubstituted alkenes. We demonstrate the potential of this method by structural diversification of several bioactive molecules.