Influence of four fiber-rich supplements on digestibility of energy and nutrients and utilization of energy and nitrogen in early and mid-gestating sows

J Anim Sci. 2023 Jan 3:101:skad007. doi: 10.1093/jas/skad007.

Abstract

The digestibility of energy and nutrients in fiber-rich diets depends greatly on the fiber source but most data are from studies with growing pigs. The purpose of this study was to investigate the apparent total tract digestibility (ATTD) of nutrients in different fiber-rich diets and to quantify whole-body metabolism and utilization of energy and nitrogen (N) in gestating sows. Four fiber-rich diets based on sugar beet pulp (SBP), soy hulls (SH), palm kernel expellers (PKE), or a mixed fiber (MF) were formulated, with an average daily intake of total fiber (TF) of 471, 507, 651, and 437 g/d, respectively. A total of 48 multiparous sows were stratified by body weight at mating (day 0) and assigned to one of the four diets throughout gestation. Body weight and backfat were measured, and body pools of fat and protein were estimated using the deuterium oxide dilution technique at days 0, 30, and 60. On days 30 and 60, urine and fecal grab samples were obtained. On days 15 and 45, heart rate was measured to estimate total heat production. The ATTD of nutrients differed across treatments (P < 0.001), while in vivo organic matter digestibility deviated with up to ±3.3% units from in vitro enzyme digestibility of organic matter. The ATTD of energy was highly negatively correlated with intake of lignin (P < 0.001), while ATTD of N was highest (negatively) correlated (P < 0.001) with intake of insoluble non-starch polysaccharides (NSP). The ATTD of all nutrients except NSP was lowest in PKE-fed sows and highest, except for N, in sows fed the SBP diet. The ATTD of N was highest in the MF-fed sows and ATTD of NSP was lowest in the MF-fed sows. Sows lost most energy as heat (53% to 72% of gross energy intake), followed by energy in feces (15% to 17%), urine (3% to 4%), and methane (0.5% to 0.9%). Energy for maintenance accounted for the majority of the heat production and the total energy retention was lowest and highest in the SBP- and PKE-fed sows, with a retention of 3.3 and 13.3 MJ/d, respectively (P < 0.001). Sows lost most N through urine, the lowest and highest N loss (relative to intake) was observed in SH- and SBP-fed sows (50% to 63%, respectively), while 14% to 26% was retained as body protein. In conclusion, the fiber-rich diets were utilized efficiently by gestating sows with respect to energy with ATTD values above 82% in all four fiber-rich diets, whereas the high TF content in the diets compromised the N utilization in gestating sows.

Keywords: feed efficiency; heat production; protein quality; sow nutrition; total fiber.

Plain language summary

How much energy and nutrients a pig can use from the feed depends greatly on the feed ingredients, feed level, and the physiological stage of the animal. Fibers are of great interest because they can improve health and welfare of pigs and co-products from the food and agriculture industries are among the most interesting. The ability to degrade different fiber sources and utilize energy and nutrients are poorly understood in gestating sows, but highly important when formulating the feed composition. The hypothesis was that sugar beet pulp was superior to the other three fiber-rich sources investigated: soy hulls, palm kernel expellers, or a mix of fibers, with respect to intake and utilization of energy and nutrients. We did not find sugar beet pulp to be particularly superior with respect to energy (fermentation or utilization), whereas utilization of nitrogen was highest for sugar beet pulp but compromised in the three other diets depending on fiber sources.

MeSH terms

  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Diet / veterinary
  • Dietary Fiber / metabolism
  • Digestion* / physiology
  • Energy Intake
  • Female
  • Nitrogen* / metabolism
  • Nutrients / metabolism
  • Swine

Substances

  • Nitrogen
  • Dietary Fiber