Fabrication of Coral-like Polyaniline/Continuously Reinforced Carbon Nanotube Woven Composite Films for Flexible High-Stability Supercapacitor Electrodes

ACS Appl Mater Interfaces. 2023 Jan 25;15(3):4343-4357. doi: 10.1021/acsami.2c20626. Epub 2023 Jan 11.

Abstract

The electrochemical performance is significantly influenced by the structure and surface morphology of the electrode materials used in supercapacitors. Using the floating catalytic chemical vapor deposition (FCCVD) technique, a self-supporting, flexible layer of continuously reinforced carbon nanotube woven film (CNWF) was developed. Then, polyaniline (PANI) was formed in the conductive network of CNWF using cyclic voltammetry electrochemical polymerization (CVEP) in various aqueous electrolytes to produce a series of flexible CNWF/PANI composite films. The impacts of the CVEP period, electrolyte type, and electrolyte concentration on the surface morphology, doping degree, and hydrophilicity of CNWF/PANI composite films were thoroughly examined. The CNWF/PANI1-15C composite electrode, which was created using 15 cycles of CVEP in a solution of 1 M sodium bisulfate, displayed a distinctive coral-like PANI layer with a well-defined sharp nanoprotuberance structure, a 48% doping degree, and a quick reversible pseudocapacitive storage mechanism. At a current density of 1 A g-1, the energy density and specific capacitance reached 54.9 Wh kg-1 and 1098.0 F g-1, respectively, with a specific capacitance retention rate of 75.9% maintained at 10 A g-1. Both the specific capacitance and coulomb efficiency were maintained at 96.9% and more than 98.1% of their initial values after being subjected to 2000 cycles of galvanostatic charge and discharge, demonstrating excellent electrochemical cycling stability. The CNWF/PANI1-15C composite film, an ideal electrode material, offers a promising future in the field of flexible energy storage due to its exceptional mechanical properties (127.9 MPa tensile strength and 16.2% elongation at break).

Keywords: carbon nanotube woven film; coral-like; electrochemical polymerization; electrode; polyaniline.