Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident

Environ Sci Pollut Res Int. 2023 Mar;30(14):41045-41059. doi: 10.1007/s11356-023-25247-7. Epub 2023 Jan 11.

Abstract

Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.

Keywords: 137Cs; Fungi; Goiânia accident; Radioactive waste; Waste management.

MeSH terms

  • Accidents
  • Biodegradation, Environmental
  • Brazil
  • Cesium Radioisotopes* / analysis
  • Radioactive Waste*

Substances

  • Cesium Radioisotopes
  • Radioactive Waste