Topological superconductivity and large spin Hall effect in the kagome family Ti6X4 (X = Bi, Sb, Pb, Tl, and In)

iScience. 2022 Dec 17;26(1):105813. doi: 10.1016/j.isci.2022.105813. eCollection 2023 Jan 20.

Abstract

Topological superconductors (TSC) become a focus of research due to the accompanying Majorana fermions. However, the reported TSC are extremely rare. Recent experiments reported kagome TSC AV3Sb5 (A = K, Rb, and Cs) exhibit unique superconductivity, topological surface states (TSS), and Majorana bound states. More recently, the first titanium-based kagome superconductor CsTi3Bi5 with nontrivial topology was successfully synthesized as a perspective TSC. Given that Cs contributes little to electronic structures of CsTi3Bi5 and binary compounds may be easier to be synthesized, here, by first-principle calculations, we predict five stable nonmagnetic kagome compounds Ti6X4 (X = Bi, Sb, Pb, Tl, and In) which exhibit superconductivity with critical temperature Tc = 3.8 K - 5.1 K, nontrivial Z 2 band topology, and TSS close to the Fermi level. Additionally, large intrinsic spin Hall effect is obtained in Ti6X4, which is caused by gapped Dirac nodal lines due to a strong spin-orbit coupling. This work offers new platforms for TSC and spintronic devices.

Keywords: Condensed matter physics; Physics; Superconductivity.