Dosimetric Characterization of DSF/NaOH/IA-PAE/ R. spp. Phantom Material for Radiation Therapy

Polymers (Basel). 2023 Jan 3;15(1):244. doi: 10.3390/polym15010244.

Abstract

Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated for high-energy photons (6 and 10 MV) and electrons (6, 9, 12, and 15 MeV). Results: The calculated TPR20,10 values indicate that the percentage discrepancy for 6 and 10 MV was in the range of 0.29-0.72% and 0.26-0.65%. It was also found that the relative difference in the dmax to water and solid water phantoms was between 1.08-1.28% and 5.42-6.70%. The discrepancies in the determination of PDD curves with 6, 9, 12, and 15 MeV, and those of water and solid water phantoms, ranged from 2.40-4.84%. Comparable results were found using the EBT3 films with variations of 2.0-7.0% for 6 and 10 MV photons. Likewise, the discrepancies for 6, 9, 12, and 15 MeV electrons were within an acceptable range of 2.0-4.5%. Conclusions: On the basis of these findings, the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms with 15 wt% IA-PAE addition level can be effectively used as alternative tissue-equivalent phantom material for radiation therapy applications.

Keywords: IA-PAE; absorbed dose; dosimetric properties; radiation therapy; tissue-equivalent phantom.