Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing

Polymers (Basel). 2022 Dec 25;15(1):84. doi: 10.3390/polym15010084.

Abstract

An electrocorticogram (ECoG) is the electrical activity obtainable from the cerebral cortex and an informative source with considerable potential for future advanced applications in various brain-interfacing technologies. Considerable effort has been devoted to developing biocompatible, conformal, soft, and conductive interfacial materials for bridging devices and brain tissue; however, the implementation of brain-adaptive materials with optimized electrical and mechanical characteristics remains challenging. Herein, we present surface electrode arrays using the soft tough ionic conductive hydrogel (STICH). The newly proposed STICH features brain-adaptive softness with Young's modulus of ~9.46 kPa, which is sufficient to form a conformal interface with the cortex. Additionally, the STICH has high toughness of ~36.85 kJ/mm3, highlighting its robustness for maintaining the solid structure during interfacing with wet brain tissue. The stretchable metal electrodes with a wavy pattern printed on the elastomer were coated with the STICH as an interfacial layer, resulting in an improvement of the impedance from 60 kΩ to 10 kΩ at 1 kHz after coating. Acute in vivo experiments for ECoG monitoring were performed in anesthetized rodents, thereby successfully realizing conformal interfacing to the animal's cortex and the sensitive recording of electrical activity using the STICH-coated electrodes, which exhibited a higher visual-evoked potential (VEP) amplitude than that of the control device.

Keywords: brain interface; conductive hydrogel; electrocorticogram; implantable electronics; soft electronics; stretchable electronics.