Controllable Preparation of Ag-SiO2 Composite Nanoparticles and Their Applications in Fluorescence Enhancement

Materials (Basel). 2022 Dec 26;16(1):201. doi: 10.3390/ma16010201.

Abstract

Metal nanoparticles have attracted a great deal of interest due to their unique properties of surface plasmon resonance. Metal nanoparticles can enhance the fluorescence emission intensity of quantum dots (QDs) through the local surface plasmon resonance effect, which is mainly determined by the distance between them. Therefore, it is very important to achieve controllable distance between metal and QDs, and study fluorescence enhancement. In this work, the controllable adjustment of the distance between metal nanoparticles and QDs was successfully realized by controlling the thickness of the SiO2 shell of Ag@SiO2 nanoparticles. Firstly, Ag nanoparticles with uniform size distribution and relatively high concentration were prepared, and then the thickness of the SiO2 shell was controlled by controlling the amount of tetra-ethyl orthosilicate (TEOS) in the hydrolysis of TEOS reaction. (3-aminopropyl) triethoxysilane (APS) was used to connect CdS/ZnS QDs with Ag@SiO2 nanoparticles to form Ag@SiO2@CdS/ZnS QD composite nanoparticles. The fluorescence spectra shows that the fluorescence intensity of the Ag@SiO2@CdS/ZnS QD composite nanoparticles is significantly enhanced. Photoexcitation spectra and fluorescence spectra of CdS/ZnS QD and Ag@SiO2@CdS/ZnS QD composite nanoparticles, measured under different energy excitation conditions, indicate that the existence of Ag nanoparticles can enhance the fluorescence intensity of CdS/ZnS QDs. Finally, a further physical mechanism of fluorescence enhancement is revealed.

Keywords: Ag-SiO2; fluorescence enhancement; photoexcitation spectra; quantum dots; transmission electron microscope.