Porcelain versus Porcelain Stoneware: So Close, So Different. Sintering Kinetics, Phase Evolution, and Vitrification Paths

Materials (Basel). 2022 Dec 24;16(1):171. doi: 10.3390/ma16010171.

Abstract

Five porcelain and porcelain stoneware bodies were investigated to compare sintering mechanisms and kinetics, phase and microstructure evolution, and high temperature stability. All batches were designed with the same raw materials and processing conditions, and characterized by optical dilatometry, XRF, XRPD-Rietveld, FEG-SEM and technological properties. Porcelain and porcelain stoneware behave distinctly during sintering, with the convolution of completely different phase evolution and melt composition/structure. The firing behavior of porcelain is essentially controlled by microstructural features. Changes in mullitization create conditions for a relatively fast densification rate at lower temperature (depolymerized melt, lower solid load) then to contrast deformations at high temperature (enhanced effective viscosity by increasing solid load, mullite aspect ratio, and melt polymerization). In porcelain stoneware, the sintering behavior is basically governed by physical and chemical properties of the melt, which depend on the stability of quartz and mullite at high temperature. A buffering effect ensures adequate effective viscosity to counteract deformation, either by preserving a sufficient skeleton or by increasing melt viscosity if quartz is melted. When a large amount of soda-lime glass is used, no buffering effect occurs with melting of feldspars, as both solid load and melt viscosity decrease. In this batch, the persistence of a feldspathic skeleton plays a key role to control pyroplasticity.

Keywords: microstructure; mullite; non-crystalline matrix; phase composition; porcelain; porcelain stoneware; sintering.