Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method

Materials (Basel). 2022 Dec 22;16(1):122. doi: 10.3390/ma16010122.

Abstract

Complex yarns with helical wrapping structure show auxetic effect under axial tension and a wide perspective application. Experimental results suggested that initial helical angle was one of the most important structural parameters. However, the experimental method was limited and could not effectively explain the deformation behavior or auxetic mechanism. A finite element model of the helical auxetic yarn was built and used to analyze the interactive relationship between the two components and the stress distribution mode. The effectiveness and accuracy of the model was first verified by comparing with the experimental results. The simulation results showed that the complex yarn with initial helical angle of 14.5° presented the maximum negative Poisson's ratio of -2.5 under 5.0% axial strain. Both the contact property between the two components and the radial deformability of the elastic core filament were key factors of the auxetic property. When the contact surfaces were completely smooth and the friction coefficient μ was set to 0, the complex yarn presented non-auxetic behavior. When the Poisson's ratio of the core filament was 0, the complex yarn showed greater auxetic effect. During the axial stretching, the tensile stress was mainly distributed in the wrap filament, which led to structural deformation and auxetic behavior. A pair of auxetic yarns showed pore effect and high expansion under axial strain. Thus, it may be necessary to consider new weaving structures and preparation methods to obtain the desired auxetic property and application of auxetic yarns.

Keywords: Poisson’s ratio; finite element model; helical auxetic yarns; tensile behavior.