Testing Antimicrobial Properties of Selected Short Amyloids

Int J Mol Sci. 2023 Jan 2;24(1):804. doi: 10.3390/ijms24010804.

Abstract

Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.

Keywords: amyloids; antimicrobial peptides; bacteria; machine learning; non-antimicrobial peptides; prediction.

MeSH terms

  • Anti-Infective Agents* / pharmacology
  • Antimicrobial Cationic Peptides* / chemistry
  • Antimicrobial Cationic Peptides* / pharmacology
  • Bacteria

Substances

  • Antimicrobial Cationic Peptides
  • Anti-Infective Agents