Characterization difference of typical KL1, KL2 and ST11-KL64 hypervirulent and carbapenem-resistant Klebsiella pneumoniae

Drug Resist Updat. 2023 Mar:67:100918. doi: 10.1016/j.drup.2023.100918. Epub 2023 Jan 3.

Abstract

Almost all the formation of hypervirulent and carbapenem-resistant Klebsiella pneumoniae follow two major patterns: KL1/KL2 hvKP strains acquire carbapenem-resistance plasmids (CR-hvKP), and carbapenem-resistant Klebsiella pneumoniae (CRKP) strains obtain virulence plasmids (hv-CRKP). These two patterns may pose different phenotypes. In this study, three typical resistance and hypervirulent K. pneumoniae (KL1, KL2, and ST11-KL64), isolating from poor prognosis patients, were selected. Compared with ST11-KL64 hv-CRKP, KL1/KL2 hypervirulent lineages harbor significantly fewer resistance determinants and exhibited lower-level resistance to antibiotics. Notably, though the blaKPC gene could be detected in all these isolates, KL1/KL2 hvKP strain did not exhibit corresponding high-level carbapenem resistance. Unlike the resistance features, we did not observe significant virulence differences between the three strains. The ST11-KL64 hv-CRKP (1403) in this study, showed similar mucoviscosity, siderophores production, and biofilm production compared with KL1 and KL2 hvKP. Moreover, the hypervirulent of ST11-KL64 hvKP also verified with the human lung epithelial cells infection and G. mellonella infection models. Moreover, we found the pLVPK-like virulence plasmid and IncF blaKPC-2 plasmid was crucial for the formation of hypervirulent and carbapenem-resistant K. pneumoniae. The conservation of origin of transfer site (oriT) in these virulence and blaKPC-2 plasmids, indicated the virulence plasmids could transfer to CRKP with the help of blaKPC-2 plasmids. The co-existence of virulence plasmid and blaKPC-2 plasmid facilitate the formation of ST11-KL64 hv-CPKP, which then become nosocomial epidemic under the antibiotic stress. The ST11-KL64 hv-CPKP may poses a substantial threat to healthcare networks, urgent measures were needed to prevent further dissemination in nosocomial settings.

Keywords: Carbapenem resistance; Hypervirulence; KPC-2; Klebsiella pneumoniae; Virulence plasmid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Carbapenem-Resistant Enterobacteriaceae* / genetics
  • Carbapenems / pharmacology
  • Carbapenems / therapeutic use
  • Cross Infection*
  • Humans
  • Klebsiella Infections* / drug therapy
  • Klebsiella Infections* / epidemiology
  • Klebsiella pneumoniae / genetics
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Carbapenems
  • beta-Lactamases