Side-by-side comparison of recombinant human glutathione peroxidases identifies overlapping substrate specificities for soluble hydroperoxides

Redox Biol. 2023 Feb:59:102593. doi: 10.1016/j.redox.2022.102593. Epub 2023 Jan 2.

Abstract

Five out of eight human glutathione peroxidases (GPXs) are selenoproteins, representing proteins that contain selenium as part of the amino acid selenocysteine. The GPXs are important for reducing hydroperoxides in a glutathione-consuming manner and thus regulate cellular redox homeostasis. GPX1, GPX2, and GPX4 represent the three main cytosolic GPXs, but they differ in their expression patterns with GPX1 and GPX4 being expressed ubiquitously, whereas GPX2 is mainly expressed in epithelial cells. GPX1 and GPX2 have been described to reduce soluble hydroperoxides, while GPX4 reduces complex lipid hydroperoxides, thus protecting cells from lipid peroxidation and ferroptosis. But most of these data are derived from cells that are devoid of one of the isoforms and thus, compensation or other cellular effects might affect the conclusions. So far, the use of isolated recombinant human selenoprotein glutathione peroxidases in pure enzyme assays has not been employed to study their substrate specificities side by side. Using recombinant GPX1, GPX2, and GPX4 produced in E. coli we here assessed their GPX activities by a NADPH-consuming glutathione reductase-coupled assay with 17 different peroxides (all at 50 μM) as substrates. GPX4 was clearly the only isoform able to reduce phosphatidylcholine hydroperoxide. In contrast, small soluble hydroperoxides such as H2O2, cumene hydroperoxide, and tert-butyl hydroperoxide were reduced by all three isoforms, but with approximately 10-fold higher efficiency for GPX1 in comparison to GPX2 and GPX4. Also, several fatty acid-derived hydroperoxides were reduced by all three isoforms and again GPX1 had the highest activity. Interestingly, the stereoisomerism of the fatty acid-derived hydroperoxides clearly affected the activity of the GPX enzymes. Overall, distinct substrate specificity is obvious for GPX4, but not so when comparing GPX1 and GPX2. Clearly GPX1 was the most potent isoform of the three GPXs in terms of turnover in reduction of soluble and fatty-acid derived hydroperoxides.

Keywords: Glutathione peroxidase; Hydroperoxides; Selenoprotein.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Fatty Acids
  • Glutathione
  • Glutathione Peroxidase / genetics
  • Glutathione Peroxidase / metabolism
  • Humans
  • Hydrogen Peroxide* / metabolism
  • Substrate Specificity

Substances

  • Fatty Acids
  • Glutathione
  • Glutathione Peroxidase
  • Hydrogen Peroxide