Trace elements in surface sediments from Xinyanggang River of Jiangsu Province, China: Spatial distribution, risk assessment and source appointment

Mar Pollut Bull. 2023 Feb:187:114550. doi: 10.1016/j.marpolbul.2022.114550. Epub 2023 Jan 4.

Abstract

The Xinyanggang River in Yancheng City, one of the essential rivers entering the Yellow sea, has imported abundant pollutants to the coast of Jiangsu Province. Trace elements (Cr, Ni, Cu, Zn, As, Rb, Sr, Mo, Pb, Th, U, Sc, Ga, Se, Zr, Nb, and Sn) in surface sediments in the Xinyanggang River were measured to analyze the spatial distribution, risk assessment, and source appointment. The results showed that the parts of 17 trace elements presented high average values in river sediments, such as Zr (309.19 mg/kg), Sr (182.72 mg/kg), Zn (77.67 mg/kg), and Cr (70.63 mg/kg). Compared with some coastal rivers, the Xinyanggang River was polluted by certain trace elements, such as Cr, Zn, and As. Based on the analysis of the enrichment factor (EF), the contamination factor (CF), the pollution load index (PLI), and the geoaccumulation index (Igeo), trace elements in sediments showed unpolluted to moderate contamination and mild to moderate enrichment. Among them, Zn, Pb, and Sn were highly polluted. The multivariate analysis, the principal component analysis-multiple linear regression (APCS-MLR) model, and the Unmix model identified four contributing trace element sources. Cr, Th, U, Se, Zr, and Nb originated from manufacturing industries and hydrodynamic transport erosion. Ni, Rb, Sc, and Ga were attributed to natural source. Cu, Zn, Mo, Pb, and Sn were contributed from mixed sources including industrial wastewater and transportation emissions. As and Sr were associated mainly with mixed sources of agriculture and combustion. These four sources of metals accounted for 22.5 %, 5.7 %, 15.3 %, and 11.1 % by using the APCS-MLR model, whereas 22.9 %, 39.7 %, 17.5 %, and 19.9 % by using the Unmix model, respectively.

Keywords: Contamination evaluation; Source identification; Spatial distribution; The Xinyanggang River; Trace elements.

MeSH terms

  • China
  • Environmental Monitoring / methods
  • Geologic Sediments
  • Lead
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Rivers
  • Trace Elements* / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Metals, Heavy
  • Trace Elements
  • Lead
  • Water Pollutants, Chemical