The intestinal permeability marker FITC-dextran 4kDa should be dosed according to lean body mass in obese mice

Nutr Diabetes. 2023 Jan 5;13(1):1. doi: 10.1038/s41387-022-00230-2.

Abstract

Aims: To investigate the influence of the dose in the FITC-Dextran 4kDa (FD-4) permeability test in an obese mouse model, we tested the bodyweight dose regimen and a lean body mass-based dose regimen in high fat diet (HFD) mice and low fat diet (LFD) mice. We hypothesized that the FD-4 permeation result would be dose-dependent.

Methods: The two dose regimens were compared in HFD and LFD mice. Furthermore, we conducted a dose-response study to test the effect of a low or high dose of FD-4 in weight-stratified lean mice. Gene analysis of tight junctions was also carried out.

Results: The FD-4 intestinal permeability test was dose-dependent as we found a significant increase in plasma levels of FD-4 in obese mice with the bodyweight dose regimen. However, this difference was not detectable with the lean body mass dose regimen, even with variability-adjusted group sizes. However, the qPCR analysis revealed a decrease in tight junction gene expression in obese mice. Furthermore, we found a dose-dependent significant increase in FD-4 measured in plasma samples in lean mice. No significant difference in intestinal weight was observed between lean and obese mice.

Conclusion: Evaluation of the intestinal permeability by FD-4 with the typical bodyweight dose regimen in obese mice will be confounded by the significant difference in dose given when compared to a lean control group. If the test dose is based on lean body mass, no significant difference in intestinal permeability is observed, even with large group sizes. Furthermore, we showed a dose-dependent difference in plasma FD-4 levels in lean mice. Therefore, we conclude that the dose should be based on lean body mass for the FD-4 permeability test if mice with considerable obesity differences are to be compared or to use another test with fixed doses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Intestines*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Obesity* / metabolism
  • Permeability

Substances

  • fluorescein isothiocyanate dextran