Methyl Effects on the Stereochemistry and Reactivity of PPP-Ligated Iron Hydride Complexes

Inorg Chem. 2023 Jan 16;62(2):967-978. doi: 10.1021/acs.inorgchem.2c03803. Epub 2023 Jan 5.

Abstract

Iron dihydride complexes are key intermediates in many iron-catalyzed reactions. Previous efforts to study molecules of this type have led to the discovery of a remarkably stable cis-FeH2 complex, which is supported by bis[2-(diisopropylphosphino)phenyl]phosphine (iPrPPHP) along with CO. In this work, the hydrogen on the central phosphorus has been replaced with a methyl group, and the corresponding iron carbonyl dichloride, hydrido chloride, and dihydride complexes have been synthesized. The addition of the methyl group favors the anti configuration for the Me-P-Fe-H moiety and the trans geometry for the H-Fe-CO motif, which is distinctively different from the iPrPPHP system. Furthermore, it increases the thermal stability of the dihydride complex, cis-(iPrPPMeP)Fe(CO)H2 (iPrPPMeP = bis[2-(diisopropylphosphino)phenyl]methylphosphine). The variations in stereochemistry and compound stability contribute greatly to the differences between the two PPP systems in reactions with PhCHO, CS2, and HCO2H.