An Experimental and Master Equation Investigation of Kinetics of the CH2OO + RCN Reactions (R = H, CH3, C2H5) and Their Atmospheric Relevance

J Phys Chem A. 2023 Jan 19;127(2):477-488. doi: 10.1021/acs.jpca.2c07073.

Abstract

We have performed direct kinetic measurements of the CH2OO + RCN reactions (R = H, CH3, C2H5) in the temperature range 233-360 K and pressure range 10-250 Torr using time-resolved UV-absorption spectroscopy. We have utilized a new photolytic precursor, chloroiodomethane (CH2ICl), whose photolysis at 193 nm in the presence of O2 produces CH2OO. Observed bimolecular rate coefficients for CH2OO + HCN, CH2OO + CH3CN, and CH2OO + C2H5CN reactions at 296 K are (2.22 ± 0.65) × 10-14 cm3 molecule-1 s-1, (1.02 ± 0.10) × 10-14 cm3 molecule-1 s-1, and (2.55 ± 0.13) × 10-14 cm3 molecule-1 s-1, respectively, suggesting that reaction with CH2OO is a potential atmospheric degradation pathway for nitriles. All the reactions have negligible temperature and pressure dependence in the studied regions. Quantum chemical calculations (ωB97X-D/aug-cc-pVTZ optimization with CCSD(T)-F12a/VDZ-F12 electronic energy correction) of the CH2OO + RCN reactions indicate that the barrierless lowest-energy reaction path leads to a ring closure, resulting in the formation of a 1,2,4-dioxazole compound. Master equation modeling results suggest that following the ring closure, chemical activation in the case of CH2OO + HCN and CH2OO + CH3CN reactions leads to a rapid decomposition of 1,2,4-dioxazole into a CH2O + RNCO pair, or by a rearrangement, into a formyl amide (RC(O)NHC(O)H), followed by decomposition into CO and an imidic acid (RC(NH)OH). The 1,2,4-dioxazole, the CH2O + RNCO pair, and the CO + RC(NH)OH pair are atmospherically significant end products to varying degrees.