Gut Microbiota Signature of Obese Adults Across Different Classifications

Diabetes Metab Syndr Obes. 2022 Dec 29:15:3933-3947. doi: 10.2147/DMSO.S387523. eCollection 2022.

Abstract

Purpose: Obesity is currently a major global public health issue. It has been shown by many that gut microbiota and microbial factors regulate the pathogenesis of obesity and metabolic abnormalities, but little is known about their roles in the different degrees of obesity. Here, we sought to investigate the microbial signatures of obesity of various severities.

Patients and methods: We did this by characterizing the intestinal microbiome signature in a Chinese cohort of obese patients and healthy controls using 16S rRNA gene sequencing. To this end, obesity was sub-divided into four subgroups, including "Overweight", Class I, Class II, and Class III obesity, based on body mass index (BMI).

Results: Microbial diversity decreased in obese subjects, and the reduction trend was correlated with the severity of obesity. We detected an expansion of Escherichia shigella in obese patients compared to healthy controls. The family Eubacterium coprostanoligenes and Tannerellaceae, the genera Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, Parabacteroides, and Akkermansia, and the species Prevotella copri were microbial biomarkers of healthy people. Gammaproteobacteria and Enterobacterales were biomarkers of being "Overweight". Erysipelatoclostridiaceae was a biomarker of Class I obesity. The class Bacilli and the order Lactobacillales were both biomarkers of Class II obesity. Negativicutes was a biomarker of Class III obesity. We further established relationships between this microbiome data and other biochemical data, including albumin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), vitamin folic acid (FA) and vitamin B12 (VB12), and Interleukin-6 (IL-6) levels. Function prediction results showed a marked energy metabolism dysbiosis in obesity, especially in patients with Class III obesity.

Conclusion: These results suggested that people with different levels of obesity had distinct gut microbial signatures. Decreased microbial diversity, depletion of some specific taxa, and deviation in potential functions mirrored the severity of obesity in this cohort.

Keywords: 16S rRNA sequencing; body mass index; degree of obesity; fecal microbiota.

Grants and funding

Funds to support this work were provided by the National Natural Science Foundation of China [82170887 to LYJ]; Chengdu High-level Key Clinical Specialty Construction Project [LYJ]; and the Science and Technology Project of The Health Planning Committee of Sichuan Municipality [20PJ211 to YQ].